Coordinate Systems (gala.coordinates)


The coordinates subpackage primarily provides specialty astropy.coordinates frame classes for coordinate systems defined by the Sagittarius, Orphan, and GD1 streams. It also contains functions for converting velocities between various astronomical coordinate frames and systems, but these are now deprecated with v0.2 because Astropy v2.0 now supports velocity transformations.

For the examples below the following imports have already been executed:

>>> import numpy as np
>>> import astropy.coordinates as coord
>>> import astropy.units as u
>>> import gala.coordinates as gc

Stellar stream coordinate frames

Gala provides Astropy coordinate frame classes for transforming to Sagittarius, Orphan, and GD1 stream coordinates (as defined in the references below). These classes behave like the built-in astropy coordinates frames (e.g., ICRS or Galactic) and can be transformed to and from other astropy coordinate frames. For example, to convert a set of ICRS (RA, Dec) coordinates to the Sagittarius frame:

>>> c = coord.ICRS(ra=100.68458*, dec=41.26917*
>>> sgr = c.transform_to(gc.Sagittarius)
>>> (sgr.Lambda, sgr.Beta) 
(<Longitude 179.58511053544734 deg>, <Latitude -12.558450192162654 deg>)

Or, to transform from Sagittarius coordinates to the Galactic frame:

>>> sgr = gc.Sagittarius(Lambda=156.342*, Beta=1.1*
>>> c = sgr.transform_to(coord.Galactic)
>>> (c.l, c.b) 
(<Longitude 182.5922090437946 deg>, <Latitude -9.539692094685893 deg>)

These transformations also handle velocities so that proper motion components can be transformed between the systems. For example, to transform from GD1 proper motions to Galactic proper motions:

>>> gd1 = gc.GD1(phi1=-35.00*, phi2=0*,
...              pm_phi1_cosphi2=-12.20*u.mas/u.yr,
...              pm_phi2=-3.10*u.mas/u.yr)
>>> gd1.transform_to(coord.Galactic) 
<Galactic Coordinate: (l, b) in deg
    ( 181.28968151,  54.84972806)
 (pm_l_cosb, pm_b) in mas / yr
    ( 12.03209393, -3.69847479)>

As with the other Astropy coordinate frames, with a full specification of the 3D position and velocity, we can transform to a Galactocentric frame:

>>> gd1 = gc.GD1(phi1=-35.00*, phi2=0.04*,
...              distance=7.83*u.kpc,
...              pm_phi1_cosphi2=-12.20*u.mas/u.yr,
...              pm_phi2=-3.10*u.mas/u.yr,
...              radial_velocity=-32*
>>> gd1.transform_to(coord.Galactocentric) 
<Galactocentric Coordinate (galcen_coord=<ICRS Coordinate: (ra, dec) in deg
    ( 266.4051, -28.936175)>, galcen_distance=8.3 kpc, galcen_v_sun=( 11.1,  232.24,  7.25) km / s, z_sun=27.0 pc, roll=0.0 deg): (x, y, z) in kpc
    (-12.78977138, -0.09870921,  6.44110283)
 (v_x, v_y, v_z) in km / s
    (-73.01933674, -216.37648654, -97.60065189)>

Moving from gala.coordinates to astropy.coordinates

Gala previously supported the following transformations:

  • Convert Galactocentric, cartesian velocities to heliocentric proper motion and radial velocities.
  • Convert proper motions and radial velocities to Galactocentric, cartesian velocities.
  • Convert proper motions from/to ICRS to/from Galactic.
  • Convert radial velocities from/to the Galactic Standard of Rest (GSR) to/from a barycentric frame.

Below, we’ll show examples of how to do each of these transformations using astropy.coordinates instead.

Convert Galactocentric (or simulated) to Heliocentric coordinates and velocities

Let’s assume we have a set of Cartesian positions and velocities that we assume are in a Galactocentric (i.e. Milky Way-centric) frame:

>>> xyz = [[  6.47945349, -34.4772621 ],
...        [-17.77019357,  31.11681441],
...        [-25.32101661,   3.54273331]] * u.kpc
>>> vxyz = [[-184.32952533,   76.94467146],
...         [ -19.19375771,  -98.15603007],
...         [  22.49696323,   26.35110153]] *

These could be, for example, the output from a simulation or sampling from a distribution function. We want to transform these coordinates to a Helio- or Barycentric coordinate frame to compute observable quantities like proper motions and radial velocities. This is now supported in Astropy v2.0. To start, we have to define the Galactocentric frame. That is, we have to define the sun’s position and velocity within the assumed Galactocentric frame. We do this by setting frame attributes of the astropy.coordinates.Galactocentric frame. This is a right-handed coordinate system with defaults for the position of the Galactic center in ICRS coordinates, the sun-galactic-center distance, the height of the sun above the Galactic midplane, and the solar velocity vector. We can modify all of these parameters, but for the sake of example we’ll just change the distance and solar velocity (full velocity of the sun, including the circular velocity and motion with respect to the local standard of rest):

>>> v_sun = coord.CartesianDifferential([10, 250., 7] *
>>> gc = coord.Galactocentric(x=xyz[0], y=xyz[1], z=xyz[2],
...                           v_x=vxyz[0], v_y=vxyz[1], v_z=vxyz[2],
...                           galcen_distance=8*u.kpc,
...                           galcen_v_sun=v_sun)

To transform to any other astropy.coordinates frame, we use the transform_to() method:

>>> icrs = gc.transform_to(coord.ICRS)

From the new frame, we can access the sky positions, Barycentric distances, proper motion components, and Barycentric radial velocity. For example:

>>> icrs.distance 
<Distance [ 34.17535632, 41.00810092] kpc>
>>> icrs.pm_ra_cosdec 
<Quantity [ 1.78185606, 0.92782761] mas / yr>
>>> icrs.radial_velocity 
<Quantity [  46.14528132,-305.74417355] km / s>

Convert Heliocentric (observed) to Galactocentric coordinates and velocities

To transform from Heliocentric coordinates to Galactocentric coordinates, we also have to define the sun’s position and velocity within the assumed Galactocentric frame. For the example below, we’ll use the same frame parameter values as above, but note that here we don’t pass data in to the frame class:

>>> v_sun = coord.CartesianDifferential([10, 250., 7] *
>>> gc = coord.Galactocentric(galcen_distance=8*u.kpc,
...                           galcen_v_sun=v_sun)

Now we need some Heliocentric coordinates to transform. The Galactocentric transformation requires full 3D position and velocity information, so we’ll have to specify a sky position, distance, proper motion components, and a radial velocity. Let’s start with coordinates in the ICRS frame:

>>> icrs = coord.ICRS(ra=11.23*, dec=58.13*,
...                   distance=21.34*u.pc,
...                   pm_ra_cosdec=-55.89*u.mas/u.yr, pm_dec=71*u.mas/u.yr,
...                   radial_velocity=210.43*

We again use the transform_to() method to do the transformation:

>>> icrs.transform_to(gc) 
<Galactocentric Coordinate (galcen_coord=<ICRS Coordinate: (ra, dec) in deg
    ( 266.4051, -28.936175)>, galcen_distance=8.0 kpc, galcen_v_sun=( 10.,  250.,  7.) km / s, z_sun=27.0 pc, roll=0.0 deg): (x, y, z) in pc
    (-8011.25186648,  18.02217595,  25.27812036)
 (v_x, v_y, v_z) in km / s
    (-97.06296832,  431.12942421, -2.69495881)>

Convert proper motions between the ICRS and Galactic frames

The above Galactocentric coordinate transformations require full 3D position and velocity information. However, transforming proper motion components between different Barycentric coordinate frames is just a rotation, and can therefore be done with just sky position and proper motions. For example, to convert from ICRS proper motions to Galactic proper motions:

>>> icrs = coord.ICRS(ra=11.23*, dec=58.13*,
...                   pm_ra_cosdec=-55.89*u.mas/u.yr, pm_dec=71*u.mas/u.yr)
>>> gal = icrs.transform_to(coord.Galactic)
>>> gal 
<Galactic Coordinate: (l, b) in deg
    ( 122.06871373, -4.73082278)
 (pm_l_cosb, pm_b) in mas / yr
    (-54.0689922,  72.39638239)>
>>> gal.pm_l_cosb 
<Quantity -54.06899219513397 mas / yr>


gala.coordinates Package


cartesian_to_poincare_polar(w) Convert an array of 6D Cartesian positions to Poincaré symplectic polar coordinates.


GD1(*args, **kwargs) A Heliocentric spherical coordinate system defined by the orbit of the GD1 stream, as described in Koposov et al.
Orphan(*args, **kwargs) A Heliocentric spherical coordinate system defined by the orbit of the Orphan stream, as described in Newberg et al.
Pal5(*args, **kwargs) A Heliocentric spherical coordinate system defined by the orbit of the GD1 stream, as described in Koposov et al.
Sagittarius(*args, **kwargs) A Heliocentric spherical coordinate system defined by the orbit of the Sagittarius dwarf galaxy, as described in…599.1082M and further explained in