""" 5th order Runge-Kutta integration. """
# Third-party
import numpy as np
# Project
from ..core import Integrator
from ..timespec import parse_time_specification
__all__ = ["RK5Integrator"]
# These are the Dormand-Prince parameters for embedded Runge-Kutta methods
A = np.array([0.0, 0.2, 0.3, 0.6, 1.0, 0.875])
B = np.array([[0.0, 0.0, 0.0, 0.0, 0.0],
[1./5., 0.0, 0.0, 0.0, 0.0],
[3./40., 9./40., 0.0, 0.0, 0.0],
[3./10., -9./10., 6./5., 0.0, 0.0],
[-11./54., 5./2., -70./27., 35./27., 0.0],
[1631./55296., 175./512., 575./13824., 44275./110592., 253./4096.]
])
C = np.array([37./378., 0., 250./621., 125./594., 0., 512./1771.])
D = np.array([2825./27648., 0., 18575./48384., 13525./55296.,
277./14336., 1./4.])
[docs]
class RK5Integrator(Integrator):
r"""
Initialize a 5th order Runge-Kutta integrator given a function for
computing derivatives with respect to the independent variables. The
function should, at minimum, take the independent variable as the
first argument, and the coordinates as a single vector as the second
argument. For notation and variable names, we assume this independent
variable is time, t, and the coordinate vector is named x, though it
could contain a mixture of coordinates and momenta for solving
Hamilton's equations, for example.
.. seealso::
- http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
Parameters
----------
func : func
A callable object that computes the phase-space coordinate
derivatives with respect to the independent variable at a point
in phase space.
func_args : tuple (optional)
Any extra arguments for the function.
func_units : `~gala.units.UnitSystem` (optional)
If using units, this is the unit system assumed by the
integrand function.
"""
[docs]
def step(self, t, w, dt):
""" Step forward the vector w by the given timestep.
Parameters
----------
dt : numeric
The timestep to move forward.
"""
# Runge-Kutta Fehlberg formulas (see: Numerical Recipes)
F = lambda t, w: self.F(t, w, *self._func_args) # noqa
K = np.zeros((6,)+w.shape)
K[0] = dt * F(t, w)
K[1] = dt * F(t + A[1]*dt, w + B[1][0]*K[0])
K[2] = dt * F(t + A[2]*dt, w + B[2][0]*K[0] + B[2][1]*K[1])
K[3] = dt * F(t + A[3]*dt, w + B[3][0]*K[0] + B[3][1]*K[1] + B[3][2]*K[2])
K[4] = dt * F(t + A[4]*dt, w + B[4][0]*K[0] + B[4][1]*K[1] + B[4][2]*K[2] + B[4][3]*K[3])
K[5] = dt * F(t + A[5]*dt,
w + B[5][0]*K[0] + B[5][1]*K[1] + B[5][2]*K[2] + B[5][3]*K[3] + B[5][4]*K[4])
# shift
dw = np.zeros_like(w)
for i in range(6):
dw = dw + C[i]*K[i]
return w + dw
[docs]
def __call__(self, w0, mmap=None, **time_spec):
# generate the array of times
times = parse_time_specification(self._func_units, **time_spec)
n_steps = len(times)-1
dt = times[1]-times[0]
w0_obj, w0, ws = self._prepare_ws(w0, mmap, n_steps=n_steps)
if self.store_all:
# Set first step to the initial conditions
ws[:, 0] = w0
w = w0.copy()
range_ = self._get_range_func()
for ii in range_(1, n_steps+1):
w = self.step(times[ii], w, dt)
if self.store_all:
ws[:, ii] = w
if not self.store_all:
ws = w
times = times[-1:]
return self._handle_output(w0_obj, times, ws)