class gala.integrate.DOPRI853Integrator(func, func_args=(), func_units=None, progress=False, store_all=True, **kwargs)[source]#

Bases: Integrator

This provides a wrapper around Scipy’s implementation of the Dormand-Prince 85(3) integration scheme.

See also


A callable object that computes the phase-space coordinate derivatives with respect to the independent variable at a point in phase space.

func_argstuple (optional)

Any extra arguments for the function.

func_unitsUnitSystem (optional)

If using units, this is the unit system assumed by the integrand function.

progressbool (optional)

Display a progress bar during integration.

Methods Summary

run(w0[, mmap])

Run the integrator starting from the specified phase-space position.

Methods Documentation

run(w0, mmap=None, **time_spec)[source]#

Run the integrator starting from the specified phase-space position. The initial conditions w0 should be a PhaseSpacePosition instance.

There are a few combinations of keyword arguments accepted for specifying the timestepping. For example, you can specify a fixed timestep (dt) and a number of steps (n_steps), or an array of times:

dt, n_steps[, t1] : (numeric, int[, numeric])
    A fixed timestep dt and a number of steps to run for.
dt, t1, t2 : (numeric, numeric, numeric)
    A fixed timestep dt, an initial time, and a final time.
t : array-like
    An array of times to solve on.

Initial conditions.


Timestep information passed to parse_time_specification.