.. _rotate-origin-potential: ************************************************************** Specifying rotations or origin shifts in ``Potential`` classes ************************************************************** Most of the gravitational potential classes implemented in `gala` support shifting the origin of the potential relative to the coordinate system, and specifying a rotation of the potential relative to the coordinate system. By default, the origin is assumed to be at (0,0,0) or (0,0), and there is no rotation assumed. For the examples below the following imports have already been executed:: >>> import astropy.units as u >>> import numpy as np >>> import gala.potential as gp >>> from gala.units import galactic, solarsystem Origin shifts ============= For potential classes that support these options, origin shifts are specified by passing in a `~astropy.units.Quantity` to set the origin of the potential in the given coordinate system. For example, if we are working with two `~gala.potential.KeplerPotential` objects, and we want them to be offset from one another such that one potential is at ``(1, 0, 0)`` AU and the other is at ``(-2, 0, 0)`` AU, we would define the two objects as:: >>> p1 = gp.KeplerPotential(m=1*u.Msun, origin=[1, 0, 0]*u.au, ... units=solarsystem) >>> p2 = gp.KeplerPotential(m=0.5*u.Msun, origin=[-2, 0, 0]*u.au, ... units=solarsystem) To see that these are shifted from the coordinate system origin, let's combine these two objects into a `~gala.potential.potential.CCompositePotential` and visualize the potential:: >>> pot = gp.CCompositePotential(p1=p1, p2=p2) >>> fig, ax = plt.subplots(1, 1, figsize=(5, 5)) # doctest: +SKIP >>> grid = np.linspace(-5, 5, 100) >>> p.plot_contours(grid=(grid, grid, 0.), ax=ax) # doctest: +SKIP >>> ax.set_xlabel("$x$ [kpc]") # doctest: +SKIP >>> ax.set_ylabel("$y$ [kpc]") # doctest: +SKIP .. plot:: :align: center :context: close-figs :width: 60% import astropy.units as u import matplotlib.pyplot as plt import numpy as np import gala.potential as gp from gala.units import galactic, solarsystem p1 = gp.KeplerPotential(m=1*u.Msun, origin=[1, 0, 0]*u.au, units=solarsystem) p2 = gp.KeplerPotential(m=0.5*u.Msun, origin=[-2, 0, 0]*u.au, units=solarsystem) pot = gp.CCompositePotential(p1=p1, p2=p2) fig, ax = plt.subplots(1, 1, figsize=(5, 5)) grid = np.linspace(-5, 5, 100) pot.plot_contours(grid=(grid, grid, 0.), ax=ax) # doctest: +SKIP ax.set_xlabel("$x$ [kpc]") # doctest: +SKIP ax.set_ylabel("$y$ [kpc]") # doctest: +SKIP fig.tight_layout() Rotations ========= Rotations can be specified either by passing in a `scipy.spatial.transform.Rotation` instance, or by passing in a 2D `numpy` array specifying a rotation matrix. For example, let's see what happens if we rotate a bar potential using these two possible inputs. First, we'll define a rotation matrix specifying a 30 degree rotation around the z axis (i.e. counter-clockwise) using `astropy.coordinates.matrix_utilities.rotation_matrix`. Next, we'll define a rotation using a `scipy` `~scipy.spatial.transform.Rotation` object:: >>> from astropy.coordinates.matrix_utilities import rotation_matrix >>> from scipy.spatial.transform import Rotation >>> R_arr = rotation_matrix(30*u.deg, 'z') >>> R_scipy = Rotation.from_euler('z', 30, degrees=True) .. warning:: Note that astropy and scipy have different rotation conventions, so even though both of the above look like identical 30 degree rotations around the z axis, they result in different (i.e. transposed or inverse) rotation matrices:: >>> R_arr # doctest: +FLOAT_CMP array([[ 0.8660254, 0.5 , 0. ], [-0.5 , 0.8660254, 0. ], [ 0. , 0. , 1. ]]) >>> R_scipy.as_matrix() array([[ 0.8660254, -0.5 , 0. ], [ 0.5 , 0.8660254, 0. ], [ 0. , 0. , 1. ]]) Let's see what happens to the bar potential when we specify these rotations:: >>> bar1 = gp.LongMuraliBarPotential(m=1e10, a=3.5, b=0.5, c=0.5, ... units=galactic) >>> bar2 = gp.LongMuraliBarPotential(m=1e10, a=3.5, b=0.5, c=0.5, ... units=galactic, R=R_arr) >>> bar3 = gp.LongMuraliBarPotential(m=1e10, a=3.5, b=0.5, c=0.5, ... units=galactic, R=R_scipy) .. plot:: :align: center :context: close-figs from astropy.coordinates.matrix_utilities import rotation_matrix from scipy.spatial.transform import Rotation R_arr = rotation_matrix(30*u.deg, 'z') R_scipy = Rotation.from_euler('z', 30, degrees=True) fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True) grid = np.linspace(-5, 5, 100) bar1 = gp.LongMuraliBarPotential(m=1e10, a=3.5, b=0.5, c=0.5, units=galactic) bar2 = gp.LongMuraliBarPotential(m=1e10, a=3.5, b=0.5, c=0.5, units=galactic, R=R_arr) bar3 = gp.LongMuraliBarPotential(m=1e10, a=3.5, b=0.5, c=0.5, units=galactic, R=R_scipy) bar1.plot_contours(grid=(grid, grid, 0.), ax=axes[0]) bar2.plot_contours(grid=(grid, grid, 0.), ax=axes[1]) bar3.plot_contours(grid=(grid, grid, 0.), ax=axes[2]) axes[0].set_xlabel("$x$ [kpc]") # doctest: +SKIP axes[0].set_ylabel("$y$ [kpc]") # doctest: +SKIP axes[1].set_xlabel("$x$ [kpc]") # doctest: +SKIP axes[2].set_xlabel("$x$ [kpc]") # doctest: +SKIP fig.tight_layout()